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0. Abstract. Several limiting values concerned with the various remainder forms 
in the Taylor series expansion for one and two variables are developed. In addition, 
two error estimation procedures which are applicable to power series approximations 
of differential equations are also obtained. 

1. Introduction. The integral remainder form in Taylor series expansion after 
the nth degree term of f = f(x) in the neighborhood of x = xo is given [1] by 

(1) R~(x) = o(X n! f(In+)(t)dt f k)(t) dkf 

Rewriting Eq. (1) as 

(2) Rn(x) = I [(x - t)-f(+) (t)](X - t) jdt, j = 0,1,2, *-,n, 

and using the mean value theorem for integrals, the following (n + 1) explicit re- 
mainders are obtained 

hn+l 
(3) R (j 1) (1 - O +0n(i)) , h _= x - xo, 

where 0 < On(i < 1, j = 0, 1, 2, *, n. The so-called Cauchy and Lagrange re- 
mainder forms are particular cases of (3) when j = 0 and j = n, respectively. 

2. The Limiting Values of An(2). The aim in this section is to derive the limiting 
values of On i j = 0, 1, 2, * *, n, as h -> 0 and an analogous one when f is a func- 
tion of two real variables, i.e., f = f(x, y). An application of one of these limits to 
estimating a truncation error in the power series approximations of functions and 
solutions of differential equations is presented in Section 3, for sufficiently small 
mesh width h. 

a. The one-variable case. 
THEOREM 1. If f(x) and its (n + 1) derivatives are continuous on the interval (a, b) 

and if f(n+ )(X) #xo 0, a < xo < b, then for j = 0, 1, 2, n *, - 1, 

(4) lim An = 1- ( ) i) 

Proof. Equating relation (3) with itself for n = j, then 

(j 1 n (1 O ) if(n 1)_(X +_n(j)h) = f(n+1) (Xo + o(n)h). 

(5 (j + 1)n! (1- ~ + ~ - (n + 1)! 
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Letting h -> 0 on both sides of (5), one obtains [1- 0,W]n-4 (: + 1)/(n + 1) as 
h -O 0, thus yielding relation (4). 

Corresponding to j = n, the following result is valid. 
THEOREM 2. If f(x) and its (n+ 2) derivatives are continuous on the interval (a, b) 

and if f(?+2)(Xo) $ 0, a < xo < b, then 

(6) lim On(n) - 

Proof. For j = n, we have that 

hn+l 
(7) Rn (x) = - f (n+)O + On (7)h) O < O(n) < 1 h = xz-xo. 

Since f (n+2) (x) exists, one can then apply the mean value theorem to 
f (n+1) (Xo + on (n)h), yielding 

(8) f(n+1) (x0 + on h) = f(fl?) (xo) + hOn )f (n+2) (x + On(n O'h) 

where O < En(n), 0' < 1. Hence, 

hn?l hn?2 

(9) Rn (x) = ( 1) f(n+1)(x ) + O (n l)!f (xo + n (n)O'h) 

Next, the continuity of f(n+2)(xo) also implies that the Taylor series may have an 
additional term so that the new remainder is Rn+?l(X), where 

(10) R~~~~~?1(x) = h n+) (+ 1 
(lO) Rn+1l(x) = ( h+ 2)!f(xo + & i11)h) 0 < 

On1) < 1. 

Note that 

hn+1 
f(+)(O (11) I?n(x) h-~ 1 fn + l)!y(x(R) + Rn+I1(X) (n + 1)!1 

Equating Eqs. (9) and (11) and using relation (10), it follows that 

1n fn+2) (Xo + On(i+,1)h ) 1 (12) 0 (n) = 
+ f(n+2) (X + On(n)Olh) n + 2 

This completes the proof of Theorem 2. 
b. The two-variables case. An identical result to (6) is obtained here for a func- 

tion of two variables. The extension to higher-dimensional case will therefore be 
obvious. 

Let us recall first that in Taylor series expansion of f(x, y) I eCn+l(a, b; c, d) }, the 
remainder after the nth partial derivative terms is given [1] by 

(13) (n + h n+ 1) xn?1 (XO + Onh, yo + Onk) + h+n k n+ly* 

kn?1 an+lf* 
T (n + 2) prn+t i 

THEOREM 3. If f(x7, y) is of class Cn+2(a, b; c, d) and if all the (n + 2) partial 
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derivatives are different from zero at some interior point (xO, yo), then 

(14) lim On = 
I 

h = x-xo, k = y-yo 
(h,k)-*(O,O) n + 2 

Proof. The proof follows from applying the mean value theorem to each factor 
in (13) and by considering Rn+l(x; y). The desired result will then follow from 
equating these two equivalent expressions and from taking the indicated limits. 
Indeed, 

nf+lf* _afll(n,~ anl+2f* a 
f*- 

= (xon? y) + Oiih 9 (xo + OnOh, yo + OnaOk) 

+ Onk dan2f** 

(15) 
an+lf* = an+1f(xn, YO) + O _h 

_ 

n+2f_ + _nk _n_2 

ay 8ay Axnay Axn ay aXna Iy 
. . . . . . . . . . . . . . . . . . . . . . . . . 

ayn+l ayn+l + ah an+ An+2 

hn+2 3-+9f 

) (nx+ 1)!a ynh2 (xo + On+lh, yo + On+lk) 
(16) + hn+1 k an+2f + + k2 an+2f 

(n + 1)! 1! axn+lay (n + 2)! 9yfn+2 

Noting that 

R,(x; gI) = Rn+l('v + ( h~~h an+lf(xo, Yo) hn k dc 1f(xo, Yo) 
(17) (n) 7+ 1) xn+ n! 1 x~a 

1 n+1 anf+lf(, Y) 

. (n +l ayn+l 

and equating (13) with (17) using (16), the desired relation (14) follows at once. 
Regarding functions of two and more real variables, one can generalize the re- 

sult in Eq. (14) and assert that unider the analogous hypotheses of Theorem 3 for 
f(Xi, X52,'* . i Xm), we have 

(18) lim =hk = Xk Xok k = 1,2, * *,m. 
(hj ,h2, ,hm)(O,O,-- ,0) n + 2 

3. Truncation Error Estimate with Application to Series Approximations. In 
this sectioli the limiting value (6) will be utilized to obtain a truncation error esti- 
mate applicable to power series approximation of functions and approximate power 
series solution of differential equations. (The limiting values in (4) and (18) may 
be utilized analogously.) Assuming that h =_ x - xo is sufficiently small, then sub- 
stitution of the result in Eq. (6) into relation (7) leads to the following truncation 
error estimate En (En :Rn): 
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In? = x + onh) - En- (f X h 
(19) (n + l)!f(xo - - n + 21 

n = 0,1,2, I . 

Note that expression (19) indicates that the error estimate is explicitly a function 
of the given xo and of the number of terms n in the approximation. 

Before applying estimate (19) note the following assertions. From Eq. (12) one 
has 

(12') = ~~~~ f(n2)(xo + On?ih) 1 
n + 2 fO2O(x+OG'h) n + 2 

where En = En(h) 0 for h -> 0. Applying next the mean value theorem to 
f (n+l) (xo + Onh), which may be rewritten as 

f n1 X Oh f(fl?1)FX+ h +h(On 
(20) n + 2 ( n+2 

f(n+l) xo + + 2 + hn 

there results 

f(n+1)(Xo + Onh) = f(l?1) (Xo + h) + henf(n+2) (xO + +2 +hen) 

0 <0< 1. 

Therefore, 

Rn _ f(n+) (xo + h) + h+2?E 

where 

6 = E(h) = (n + I)!f & (x2 X + 2 + GhEn). 

If a Lipschitz condition is valid for f(n+2)(x), i.e., 

If(n+2)(Xi) _ f(n+2)(X2)1 < Ljxl - X21 a < X1, X2 ? b, 

it follows from Eq. (20) that 

f(n+2) (Xo + 
h + 2 + hfn) if(n+2) (Xo + 6nn1h) - f(fl2) (x 

+ OGO'h) 

f l=+2)(Xo + 6nO'h) (n + 2)! 

< It + E'!L lhi (n + 2)!' 

where e' = e'(h) -> 0 for h -> 0. 
Hence, using the term En in addition to the truncated Taylor series, one finds 

that the error involved in approximating f(x) is of the order of magnitude 
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Vhn+2E (h) I = O (V+3). 
a. Application to power series approximation of functions. The application of es- 

timate (19) to power series approximation of functions will be considered here. In- 
deed, using the Taylor expansion for f(x) together with estimate (19), one has 

f(x) =ao + al(x-xo) + a2(X-Xo)2 + + a(x -xo)' + R. 

(21) ao + ai(x-x0a + ai(x-xo) +a2(X- + *. . + an(x -xO) + En, 

where ak = f(k)(xo)/k!, k = 0, 1, 2, * * *, n; ak may also be obtained recursively via 
the Frobenius method of substitution. The incorporation of the estimate En, given 
in (19) of the truncation error into Eq. (21), improves the accuracy of the power 
series method in approximating functions by an nth degree polynomial. As for 
evaluating the expression f(n+l)(xo + (x - xo)/(n + 2)) of En it may be analytically 
obtained for example by (n + 1)-successive differentiation of f(x) evaluated at 
x = xo + (x - xo)/(n + 2). It may also be obtained approximately using linear 
extrapolation and interpolation, e.g., 

f" ( xo + h= 
I 

4f" (x) - f" (x - h)] + 0 (h2), h = x - xo. 

Example 1. Let f(x) = ex and consider the Taylor series: 

f(x) = f(O) + xf(Ox)) 0 < 0 < 1. 

Then, 

ex= + xeO 

so that for x = 1, e = 1 + e&. e0 here is the error when using one term of the Taylor 
series. It is found from tables that e = .541 . Hence, the true error is 1.71828. 
On the other hand, the error estimate in our analysis is el"2 = 1.6487. The usual 
upper bound for the error is 

max e = e = 2.718 
0<0? 1 

To see the improved accuracy in our method to approximate e, we incorporate the 
estimate of the truncation error into the approximate expression, thus yielding 

e 1 + el/2 = 2.6487 * * . 
If now we consider two terms of the Taylor series for approximating 

e 
1 + I = 2 

and if we consider three terms, we obtain 

e - 1 + 1 + 1/2 = 2.5 . 

It is seen, therefore, via this example that three terms in Taylor series do not yield 
the accuracy obtained by our method using the error estimate after one term. Only 
when four terms in Taylor series are taken to approximate e, i.e., 

e 1 + 1 + 1/2 + 1/6 = 2.666..., 
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do we obtain a more accurate result than the one suggested by our method of 
taking one term plus the error estimate. Our method, therefore, suggests that by 
incorporating the truncation error estimate En into the approximation, there is less 
work involved in approximating functions, i.e., fewer number of terms need be ac- 
counted for. 

b. Applications to power series solutions of differential equations. Consideration 
will be given here to the utilization of estimate (19) in obtaining approximate power 
series solutions to differential equations. The solution so obtained will be in a form 
of a truncated series. This truncated series is employed over a range that is limited 
by accuracy requirements. At the end of the interval a new series development is 
started, and so on (analytic continuation process). 

Consider the system of first-order differential equations 

(22) dx ,/dt -Xi = fi(Xl, X22 .. **Xm) t), i = 1, 2, *,m 

with the initial conditions 

(23) xi(to) =xio I i =1, 2, * *m. 

Assuming that xi(t), x2(t), -., Xm(t) are analytic and single-valued throughout 
some interval (to, ti), then in view of Eqs. (18)-(19), one may solve the system of 
equations (22) in a Taylor series as follows: 

xi(t) =aoi + ali(t -to) + a2i(t -to)2 + ***+ ani(t -to)' 
(24) (t _ to)n!' dn+ (Xito + t + to i = 1, 2- ... , m . 

(n + 1!dtn+' n , 2 t=12 

The term 

dn+lX i (to + t -to) 

may be obtained either analytically from the Taylor series to nth order found, say, 
by n-successive differentiations of xi = fi(xi, * * *, xm, t) with respect to t expanded 
about t = to + I (t - to)/(n + 2)1 or numerically by use of linear extrapolation and 
interpolation (see Example 2 below). The constants aji, j = 0, 1, 2, **, n, i 
1, 2, * m may be either determined from the Taylor coefficient formula: 

ajii= djxi(to)ldtj 

or from the Frobenius method of direct substitution. As in the case of approximating 
functions, the incorporation (as done in Eq. (22)) of the estimate of the truncation 
error (19) improves the accuracy of the power series method for solving differential 
equations. 

Example 2. As a specific application of Eqs. (19)-(20), an algorithm will be de- 
veloped below to obtain numerical solutions of a differential equation of the form 

= f(t, x). 
Substituting 0 = 4 in Taylor's formula for n = 1, one obtains 

x(t + h) = x(t) + hx(t) + h2N(t + h/3)/2 + h3e(h). 
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If xU satisfies a Lipschitz condition, the error introduced at the step from t to t + h 
is O(h4). Linear extrapolation and interpolation yield 

xt + h/3) (1/3) [4x (t) - (t - h)] + 0 (h2), 

x(t + 2h/3) = (1/3)[x(t) + 2x(t + h)] + 0(h2) 

With 

Xn = x(to+nh) n n= (to+nh) fn = f(to+ nh,x) , 

one has the following algorithm 

Xn+1 xn + xnh + (1/6)[-fn-l + 4fn]h2 + 0(h4) 

Xn+2 xn + 2-tnh + (2/3)[fn + 2fn+?]h2 + 0(h4) 

Xn+2 = Xn + (1/3) [fn + 4fn+ + fn+2] + 0(h5) , 

where the last recursion formula is simply Simpson's formula. We observe here that 
this two-step method promises a good accuracy in spite of its simplicity. However, 
the stability properties of the method need be further investigated. 

4. An Alternate Truncation Error Estimate with Application to Power Series 
Solutions of Differential Equations. This section is concerned with deriving an 
alternate procedure for estimating truncation error in the power series approxima- 
tion of differential equations. The procedure is independent of the results obtained 
in Sections 1 and 2 and it is presented here owing mainly to its applicability in es- 
timating truncation errors. Unlike the method of Section 3 where high-order deriva- 
tives need be computed in obtaining the error estimate, the method proposed here 
is more direct as it does not involve such computations. 

Consider again the system of differential equations (22) with the prescribed 
initial conditions (23). Assuming a power series solution for each xi(t): 

(25) xi(t) = aoi + al(t - to) + * + ani(t - t0)8 + Rni-Pni(t) + kni, 

where 

(26) Pni(t) aoi + aii(t - to) + * * * + ani(t -t 

is an nth degree polynomial in t and where by means of Eq. (7) 

(27) Rnfi(t) = (t( to?n)l X(n+l)(i to < ef < t i = 12 2, ,m . (n + 1)! 
, 

Next, we consider the Taylor series of one less order for the derivative, i.e., 

(28) xi(t) = Pni(t) + Rni 
where 

29) Rn = (tt0) to < < t 

If t - to is small, the following approximations in terms of the mean values of {j, tS' 
may be made: 
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Xl (n+t1) xi?(n+1l) ,t1 ) (M+xl I) say 

(30) 

xm? (n ) m Xm(?+) (em') - (n?1) ("im) say 

where 

to < r71i 772i . . . 1 17m < t . 

With these assumptions one then has 

(31) Rni= ((n+ 1)/(t-to))Rni, i= 1, 2, ***,m. 

Substitutions into Eqs. (22) lead then to 

(32) Pni(t) + n? Rnfi f i(t, Pnl + Rni ,Pn2 + Rn2,* Pnm + Rnm) . 
t-to 

The system of equations (32) constitute m algebraic equations with the m unknowns 
Rni, i = 1, 2, *. *, m, only. In solving this system of equations, one may neglect 
terms involving Rn2i or higher powers. 

The direct power series substitution technique together with estimates of error 
presented above are quite simple to apply in solving differential equations. More- 
over, the error estimate for Rni(t) in either of the estimating schemes has the prop- 
erty that 

(At)n+ (1 1 
IRn(t)l < max n + 1)! " | 

the right-hand side being the usual upper-bound expression in Taylor series. 
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